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Abstract

Safety and productivity of the initial flight
test phase of a new vehicle have been
enhanced by developing the ability to mea-
sure the stability margins of the combined
control system and vehicle in flight. One
shortcoming of performing this analysis is
the long duration of the excitation signal
required to provide results over a wide
frequency range. For flight regimes such
as high angle of attack or hypersonic flight,
the ability to maintain flight condition for
this time duration is difficult. Significantly
reducing the required duration of the exci-
tation input is possible by tailoring the input
to excite only the frequency range where
the lowest stability margin is expected. For
a multiple-input/multiple-output system,
the inputs can be simultaneously applied
to the control effectors by creating each
excitation input with a unique set of
frequency components. Chirp-Z transfor-
mation algorithms can be used to match
the analysis of the results to the specific
frequencies used in the excitation input.
This report discusses the application of a
tailored excitation input to a high-fidelity
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X-31A linear model and nonlinear simula-
tion. Depending on the frequency range,
the results indicate the potential to signifi-
cantly reduce the time required for stability
measurement.

Nomenclature

Symbols

A Z transform of the first frequency 
for the Chirp-Z transform

actual lowest frequency in range 
for excitation, Hz

desired lowest frequency in 
range for excitation, Hz

actual highest frequency in 
range for excitation, Hz

desired highest frequency in 
range for excitation, Hz

FFT fast Fourier transformation

G(jω) plant transfer-function matrix

H(jω) controller transfer-function 
matrix

I identity matrix

j square root of –1.0

M the number of points in the time 
segment input to the Chirp-Z 
transform

n index of frequency components 
in input excitation 

f 1

f 1D

f 2

f 2D



                                
n1 number of cycles of the lowest 
frequency component in the 
input excitation signal in the 
total time to be processed

n2 number of cycles of the highest 
frequency component in the 
input excitation signal in the 
total time to be processed

number of frequency compo-
nents in the summed series of 
cosine waves

RMS root mean square

s Laplace operator

t time, sec

total time to be processed by the 
Chirp-Z transform, sec

total time to be processed by the 
Chirp-Z transform before round-
ing to the nearest discrete time 
interval, sec

u time series of the experimental 
excitation input applied to the 
control-effector actuator, deg

time series of the experimental 
excitation input applied to the 
first control-effector actuator, 
deg

time series of the experimental 
excitation input applied to the 
second control-effector actua-
tor, deg

time series of the experimental 
excitation input applied to the 
third control-effector actuator, 
deg

W multiplying factor to increment 
frequencies for the Chirp-Z 
transform algorithm

wavelength of highest frequency 
component in the input excita-
tion signal, sec

wavelength of highest frequency 
component in the input excita-
tion signal before adjusting to 
evenly divide , sec 

x time series of the control system 
command to the actuator, deg

time series of the control system 
command to the first control-
effector actuator, deg

time series of the control system 
command to the second control-
effector actuator, deg

∆f frequency separation between 
each component of the input 
excitation signal, Hz

∆t time separation between points 
in measured data, sec

ζ damping ratio of second-order 
system

µ singular value

π the circumference of a circle 
divided by two times its radius

Φ(n) Schroeder phase shift to be 
applied at the nth frequency, rad

ω frequency, rad/sec

Functions

CEIL round a real number to the next 
greatest integer

EXP inverse of the natural log function

ROUND round a real number to the 
nearest integer

Introduction

Safety and productivity of the initial flight
test phases of a new vehicle have been
enhanced by developing the ability to mea-
sure the stability margins of the vehicle in
flight.1–3 The method of measuring stability
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of a single feedback path has been
extended to analysis of the singular values
of a multiple-input/multiple-output system.4

One shortcoming of performing this analy-
sis is the long duration of the excitation sig-
nal (frequency sweep) required to provide
results over a relatively wide frequency
range. The requirement for a long-duration
input was driven by the need to excite the
complete frequency range (in particular,
the lowest frequencies). In previous appli-
cations,4 the multiple-input/multiple-output
system used individual excitation of each
loop, which extends the time required for
the excitation by the number of control
loops times the excitation length. For flight
regimes such as high angle of attack and
hypersonic flight, the ability to maintain
flight condition for this time duration is very
difficult, if not impossible. 

Flight testing of a new or modified vehicle
and flight control system requires an
extensive stability-margin survey using the
best available models. The data from this
analysis provide an expectation of the
range of frequencies where the minimum
stability margin will occur for specific flight
conditions. Although a validation of the
frequency response of the system over a
wide frequency range is desired, a mea-
surement of the system stability margin
only requires excitation across a small
range of frequencies. An excitation input
can be tailored to excite this specified
range of frequencies. Because the excita-
tion signal does not contain frequencies
lower than required for stability-margin
identification, the length of time for the
signal can be minimized. The amount of
time saved is increased when the minimum
stability margin occurs at a high frequency. 

Another means of shortening the excitation
time required is to apply an excitation to all
of the inputs simultaneously, which can be

successfully achieved by designing inputs
that are composed of uncorrelated
frequency components. Chirp-Z transfor-
mation algorithms can be used to match
the analysis to the specifically excited
frequencies. Similarly, processing time can
be reduced by computing singular values
only for the specific frequencies.

This report discusses the results obtained
when the excitation signal and processing
of the results are tailored to obtain a
stability margin within a prespecified
frequency range. The method is applied to
a high-fidelity linear model5 and nonlinear
simulation6 of the X-31A airplane. The
benefits and weaknesses of this technique
are discussed.

Approach

A test technique was developed to allow for
measuring the stability of a vehicle and
flight control system. The objective was to
minimize the time required for the input
excitation and for processing the results.

Input Excitation Signal Design

A series of summed cosine waves has
been shown to provide good excitation over
a discrete set of frequencies.7 A signal with
summed cosine waves has the advantage
that the dwell time at each frequency is
greatly increased in comparison to a
frequency-sweep input. By appropriate
selection of the discrete frequencies,
constructing an input with a period length
exactly matching the length of time to be
processed is possible. By matching the
process time to the period length, problems
caused by frequency leakage can be
avoided.8

For a given desired frequency range of
excitation (from  to ), the minimumf 1D f 2D
3



            
frequency in the range is the largest
contributor to determining the length of the
excitation input. To obtain a good
estimation of the frequency response in the
presence of noise and disturbances,
having a time sequence with multiple
cycles at the excitation frequency is
desired. Experimental results from
simulations showed that reasonable results
can be obtained with three cycles of
excitation. Fewer than three cycles reduces
the quality of the results. The maximum
desired frequency ( ) should be
adjusted so that it has a period that evenly
divides into the total time to be processed
( ). When  and  are selected, a
range of harmonic frequencies between
them can be selected such that the cycle
lengths divide evenly into . The following
logic can be used to construct a series of
discrete frequencies for the input excitation
signal generation.

Calculate the total time to be processed as
n1 cycles of the lowest desired frequency:

n1 = 3

Round this solution to the nearest discrete
time step (∆t). The discrete time step ∆t is
the time between data samples (usually the
update rate of the flight control laws):

The actual starting frequency ( ) then
becomes:

The maximum frequency for the excitation
is the highest frequency desired adjusted

upward so that its wavelength evenly
divides the total process time:

The actual number of cycles of the ending
frequency (n2) and the actual ending
frequency ( ) are calculated by:

The input excitation can then be generated
as a sum of cosines starting with three (n1)
wavelengths in  and counting up to n2
wavelengths in . The input excitation is
normalized by dividing by the total number
of frequencies ( ) to keep the total signal
magnitude at approximately 1.0: 

The change in frequency between each
component is simply:

This process generates an excitation
(fig. 1) with a desired frequency range from
5.0 to 15.0 rad/sec (n1 = 3,  = 3.76,  =
0.7979 (5.013 rad/sec),  = 2.3936
(15.040 rad/sec), ∆t = 0.02). By using
phase shifting as suggested by
Schroeder,7 the following input sum
reduces the peak factor of the excitation

f 2D

t P f 1D f 2D

t P

t PD n1 f⁄ 1D=

t P ROUND t PD ∆t⁄( )( ) ∆t×=

f 1

f 1 n1 t P⁄=

w 2D 1 f⁄ 2D=

f 2

n2 CEIL t P w⁄ 2D( )=

f 2 n2 t P⁄=

w 2 1 f 2⁄=

t P
t P

nF

nF n2 n1– 1+=

u 2π t n t⁄ P××( )cos
n n1=

n2

∑ nF⁄=

∆f 1.0 t P⁄=

t P f 1
f 2
4



Figure 1. Effect of Schroeder phase shifting on input excitation (n1 = 3,  = 3.76,  =
0.7979 (5.013 rad/sec),  = 2.3936 (15.040 rad/sec), ∆t = 0.02).
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t P f 1
f 2
while maintaining the same frequency
content (fig. 1):

The amount of phase shift used at each
discrete frequency (Φ(n)) is designed to
minimize the overall peak overshoot
values.

Matching the Signal Processing to the 
Excitation

A Chirp-Z transform allows for more
flexibility in choosing the frequencies to be
processed for a given time segment than a
fast Fourier transformation (FFT) algorithm.
Using the Chirp-Z transform, the
frequencies processed can be matched to

those frequencies that comprise the input
excitation. The inputs to a Chirp-Z
transform algorithm that determine the
frequencies processed are as follows:

• The number of points in the time
segment (M): 

• The Z transform (or transform into the
discrete domain) of the starting
frequency (A): 

• A multiplying factor to increment the
subsequent frequencies (W): 

With these inputs, the first  points
calculated by the Chirp-Z transform

Φ n( ) π n
2× nF⁄=

u 2π t n t p⁄××( ) Φ n( )+( )cos
n n1=

n2

∑= nF⁄

M t P ∆t⁄=

A EXP j 2 π f 1 ∆t××××( )=

W EXP j– 2 π ∆f ∆t××××( )=

nF
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algorithm correspond to the input excitation
frequency components.

Multivariable Stability Analysis

A multiple-input/multiple-output system
requires measurement of a set of transfer
functions to fully define the dynamic
characteristics of the system. This set of
transfer functions can be expressed as a
complex matrix that varies as a function of
frequency. The singular value of this
complex matrix is proportional to the
minimum perturbation that will cause
system instability. Various methods exist for
determining the lowest multivariable
stability margin of a given system.9 All of
these methods require the measurement of
the system dynamics.

This paper addresses the experimental
input excitation required to properly
measure the system dynamics over a
specific frequency range. The reader will
have to determine which multivariable
stability analysis method should be used to

extract margins. A method has been
presented for using structured real
perturbations that are related directly to
individual loop-gain and phase margins.9

As long as the excitation allows for
sufficient identification of the frequency
response, the majority of the multivariable
stability analysis methods could be applied
to the resulting transfer functions.

For the examples presented here, the
transfer function H(jω)G(jω) / [I + H(jω)G(jω)]
was estimated from forced-excitation data.
Figure 2 shows the definition of the input
and output measurements required to
calculate the matrix of closed-loop transfer
functions. For simplicity, figure 2 shows a
two-input/two-output system. At each fre-
quency, the singular value was computed
using complex multiplicative uncertainties.9

This singular value is plotted as a function
of frequency for a given flight condition.
The peak value (peak µ) on this plot
defines the point of lowest tolerance to mul-
tiplicative perturbations at the input to the
vehicle dynamics (usually the input to the
6

Figure 2. Multivariable stability-margin measurement process.
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control-effector actuators).9 A multivariable
stability margin is thus defined for each
flight condition, and a specific frequency is
identified where the lowest margin is
expected to occur.

Simultaneous Excitation

Multivariable stability analysis of experi-
mental data can be performed using sepa-
rate excitation of each system input to
construct a matrix of transfer functions that
define the system dynamics.4 Using sepa-
rate excitation multiplies the time required
for the total excitation by the number of
inputs. If a set of uncorrelated excitation
signals can be defined, then the signals
can be applied to the inputs simultaneously
to shorten the total excitation time required.

One method for developing uncorrelated
excitation inputs is to use a unique set of
frequency components to construct each
input. For a case with three control
effectors, the input excitation defined in the
preceding section can be divided into three
separate inputs using the following:

Using this method imposes a requirement
that the number of frequencies ( ) be

evenly divisible by the number of inputs (in
this case, three). Using the preceding
calculation, these three inputs ( , ,
and ) are uncorrelated and periodic with
a period of . The three resulting excita-
tion inputs are applied simultaneously, and
the transfer functions are calculated using
Chirp-Z transform algorithms. 

The resulting transfer functions obtained
from the Chirp-Z transform are valid only
for certain discrete frequencies. For
example, valid results due to input  are
obtained for frequencies corresponding to
index n = 1,4,7,... of the original (undivided)
set of frequencies. For each input, the
results of the Chirp-Z transform are first
thinned to include only results at valid
frequency points, then linear interpolation
is used to estimate the transfer-function
values at the frequencies that were not
excited. In this way, a fully populated matrix
of transfer functions is approximated over
the range of original frequencies. Unless
extrapolation is used, the frequency range
is reduced by two points at the beginning
and ending frequencies. In using this
particular method, a multivariable system
can be analyzed without the penalty of
excitation time required for each individual
input.

Application to a Second-Order System

Some of the benefits and areas of concern
for using tailored excitation for frequency
response identification can be best
illustrated with a simple model. The
examples presented here use a single-
input/single-output second-order system
like the one illustrated below:

u1 2π t n1 3 n×+( ) t p⁄××( )(cos
n 0=

nF 3⁄
∑=

Φ n1 3 n×+( ) )+ nF 3⁄( )⁄

u2 2π t n1 3 n 1+×+( )××((cos
n 0=

nF 3⁄
∑=

t P )⁄   +  Φ n 1 3 n 1+ × + ( ) ) n F 3 ⁄( )⁄

u3 2π t n1 3 n 2+×+( )××((cos
n 0=

nF 3⁄
∑=

t P )⁄   +  Φ n 1 3 n 2+ × + ( ) ) n F 3 ⁄( )⁄

nF

u1 u2
u3

t P

u1

s 10.0+

s2 2ζ20 20
2

+ +
---------------------------------------
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Startup Transient Behavior

A stable linear system that is driven by a
periodic forcing function over time settles to
have a periodic output. Care should be
taken to ensure that the data used as input
to the Chirp-Z transform are not corrupted
by startup transients induced by the
application of the excitation input. A system
with low damping takes a longer time than
a system with high damping for the output
to reach a steady-state periodic condition.
A system with a low stability margin would
be expected to have elements in the
transfer-function matrix with low damping.
For the purpose of stability-margin
measurement, extreme care should be
used to ensure that the effect of startup
transients does not mask a real stability
problem. The input should be applied over
a longer time period than is actually
processed. 

To illustrate one potential effect of a startup
transient, a second-order system with
damping of ζ = 0.01 was tested. Figure 3
shows the response of this lightly damped
system to an input with desired frequencies
from 10 to 30 rad/sec (n1 = 5,  = 3.14,

 = 1.592 (10.003 rad/sec),  = 4.777
(30.015 rad/sec), ∆t = 0.01). The input was
repeated until a steady-state output was
achieved (in this case for seven cycles).
The resulting output shows that the
response approaches a steady-state
amplitude by the third cycle. Figure 4
shows the calculated frequency response
of the system using only the first cycle
compared to using only the third cycle.
Results using only the third cycle show
greatly improved correlation with the
analytic solution.

One means of testing for erroneous results
caused by startup transients would be to

t P
f 1 f 2
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Figure 3. Response of a lightly damped (

 

ζ

 

 = 0.01) second-order system to a cyclic tailored
excitation (n1 = 5,  = 3.14,  = 1.592 (10.003 rad/sec),  = 4.777 (30.015 rad/sec),

 

∆

 

t

 

 = 0.01).
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Figure 4. Effect of startup transients on a lightly damped (ζ =0.01) second-order system
(n1 = 5,  = 3.14,  = 1.592 (10.003 rad/sec),  = 4.777 (30.015 rad/sec), ∆t = 0.01).
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process two segments of data skewed in
time. Ideally, the transfer function estimated
from these two time segments should be
identical. If different results are obtained, it
may indicate that a steady-state condition
has not been reached. For the extreme
case of the lightly damped (

 

ζ

 

 = 0.01)
second-order system, a test for startup
transient errors was devised. The same
3.14-sec period excitation (fig. 3) described
in the previous paragraph was used.
Multiple time cycles of the input excitation
were used to drive the system. Two time
segments were processed through the
Chirp-Z transform. The two time segments
were skewed by one-half of a cycle length
(  /2). The root mean square (RMS)
difference between the magnitude and
phase obtained by processing the two
segments was calculated. 

Table 1 shows the results obtained using
various amounts of delay time to allow for

startup transients to settle. As would be
expected, the RMS errors approached zero
as the delay time increased. By choosing
an appropriate level of acceptable RMS
error, this test can be used with simulation
models to determine the amount of time to
allow the system to settle to a steady-state

t P

 

Table 1. Effect of time delay on errors
caused by startup transients.

 

ζ

 

 = 0.01

 

ζ

 

 = 0.02

 

Delay
time,
sec

RMS 
error

amplitude
ratio, dB

RMS 
error

phase,
deg

RMS 
error

amplitude
ratio, dB

RMS 
error

phase,
deg

 

2.0 4.0 28.3 1.88 12.2
4.0 3.6 15.8 1.01 4.32
6.0 1.9 10.2 0.38 1.98
8.0 1.0 8.3 0.13 1.16

10.0 0.8 5.9 0.07 0.52
12.0 0.5 4.2 0.03 0.25
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response. In flight test, the RMS error can
be calculated to provide some indication of
the validity of the calculated margin. For a
system with increased damping (ζ = 0.02),
the transient effects are much less severe
than a system with damping of ζ = 0.01
(table 1).

Further work is needed to refine this
validity test. The amount of time skew was
chosen somewhat arbitrarily. A large time
skew is desired to ensure that steady-state
conditions have been reached; however, a
large time skew imposes an additional
amount of time required for the input
excitation. A large time skew also
introduces the potential for the flight
condition to change. For a specific
application, an appropriate time skew
would need to be chosen to balance these
conflicting requirements.

Frequency Leakage

Frequency leakage occurs when a
nonperiodic time segment is processed
using Fourier transformations. The Fourier
transformation attempts to match a Fourier
series to an infinite repetition of the time
segment. If the time segment does not start
and end with the same value, erroneous
results are caused by matching the
discontinuity between each time segment.
Various windowing techniques are used to
minimize the effects of leakage with some
success. By using a tailored excitation that
forces a periodic system response and
matching the length of processed data to
the length of the period, frequency leakage
can be completely avoided. 

Figure 5 shows the effects of frequency
leakage when different length time
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Figure 5. Effect of frequency leakage on a second-order (

 

ζ

 

 = 0.02) system (n1 = 5,
 = 3.14,  = 1.592 (10.003 rad/sec),  = 4.777 (30.015 rad/sec), 

 

∆

 

t

 

 = 0.01).
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segments are processed through a Chirp-Z
transform. A series of summed cosine
waves with a desired frequency range from
10.0 to 30.0 rad/sec (n1 = 5,  = 3.14,

 = 1.592 (10.003 rad/sec),  = 4.777
(30.015 rad/sec), 

 

∆

 

t

 

 = 0.01) were input to
the same second-order filter (described in
the Application to a Second-Order System
section) with damping of 

 

ζ

 

 = 0.02. Two
different length time segments of the input
and output of the filter were processed
through a Chirp-Z transform to produce the
frequency response of the filter at the
excitation frequencies. The length of the
short time segment was chosen to match
the wavelengths (or some multiple of the
wavelengths) of the frequency components
of the input excitation (  = 3.14). The long
time segment used 20 extra time points
(  = 3.34) and illustrates the erroneous
results that can be caused by frequency
leakage.

 

Application to the X-31A Airplane

 

The X-31A airplane

 

10

 

 provides an example
of an experimental vehicle that initially
required an extensive flight envelope
clearance process. The X-31A airplane is
statically unstable in the longitudinal axis
with the worst-case instability of approxi-
mately 5 percent mean aerodynamic
chord. In the pitch axis, active control of
symmetric trailing-edge wing flaps,
canards, and pitch thrust vectoring is used
for stability and control.

 

5,10

 

 Although not
used for this vehicle, a procedure to
measure in flight the multivariable stability
margins could have enhanced the effi-
ciency of the flight clearance process.

 
Definition of Frequency Range

 

A matrix of 1-g flight conditions (table 2,
columns 1–3) was chosen to span the

conventional (excluding poststall) flight
envelope of the X-31A airplane. A multi-
variable stability analysis was conducted
for the longitudinal axis using multiplicative
variations at the input plane (at the actua-
tors). The three inputs (symmetric trailing-
edge wing flaps, canards, and pitch thrust
vectoring) resulted in a 3-by-3 matrix of
transfer functions. Table 2, columns 4 and
5, show the peak singular values (peak 

 

µ

 

)
and the frequency at which the values
occur obtained analytically from a vali-
dated, 45-state linear model

 

5

 

 for each of
the flight conditions.

Figure 6 shows the singular values,
obtained analytically from a linear model,
plotted as a function of frequency for these
flight conditions. As figure 6 and table 2
show, the points of lowest stability (peak 

 
µ

 
)

occurred in two frequency ranges. Seven
cases had minimum margins in the range
from 1.0 to 2.0 rad/sec, and four cases (at
higher speeds) were within the range from
3.0 to 6.0 rad/sec. Validation of these

t P
f 1 f 2

t P

t P

Table 2. Stability margins for the X-31A
airplane at selected flight conditions.

Case
no.

Altitude,
ft

Mach
no.

Freq. of
peak µ,*

rad/sec
Peak

µ*
Peak

µ†

1 10,000 0.50 1.1 1.42 1.42
2 10,000 0.70 1.5 1.36 1.36
3 10,000 0.90 5.6 1.07 1.06
4 20,000 0.45 1.4 1.30 1.29
5 20,000 0.60 1.4 1.39 1.39
6 20,000 0.80 1.5 1.40 1.40
7 20,000 0.95 4.5 1.11 1.11
8 30,000 0.50 1.0 1.44 1.43
9 30,000 0.70 1.5 1.36 1.35
10 30,000 0.90 3.3 1.15 1.10
11 30,000 1.20 5.6 1.01 0.98

*linear analytic method
†linear time-based method
11



Figure 6. Structured singular values for the X-31A flight envelope.
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multivariable stability margins requires
excitation and measurement of the
dynamics of the vehicle over these two
frequency ranges.

Results for the Low-Frequency Range

An excitation signal that covers the
frequency range from 0.5 to 3.0 rad/sec
was developed to measure the minimum
stability margins for seven of the flight
conditions shown in table 2. Although the
minimum stability margin was expected to
occur between 1.0 and 2.0 rad/sec, an
extended frequency range was used for
two reasons. First, the method using
simultaneous inputs without extrapolation
results in a reduction in the range of
results. Second, differences between
predicted and actual (or in this case,
between linear and nonlinear) results add
some uncertainty in the frequency at which
the minimum margin will occur.

Following the procedure proposed in this
paper, a tailored excitation input was
generated (n1 = 3,  = 42.7,  = 0.0796
(0.500 rad/sec),  = 0.504 (3.167 rad/
sec), ∆t = 0.01). A delay of 5 sec was used
to avoid startup transient errors. The sum
of the total processed time and delay time
(45.7 sec) can be compared to more than
120 sec required for FFT analysis with
2048 data points applied to three inputs
separately. Because of the low frequencies
involved, the majority of the time saving
was achieved by using simultaneous inputs
rather than by limiting the frequency range.

Figure 7 shows a representative example
comparing the results from linear analytic
methods with the time-domain approach
using the linear model at Mach 0.7 and an
altitude of 10,000 ft (case 2). Columns 5
and 6 in table 2 show results using the
linear model with both analytical and time-
domain methods for each of the flight

t P f 1
f 2
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Figure 7. Structured singular values for the linear model of the X-31A airplane at Mach 0.70
and an altitude of 10,000 ft (case 2, n1 = 3,  = 42.7,  = 0.0796 (0.500 rad/sec),

 = 0.504 (3.167 rad/sec), ∆t = 0.01).
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conditions. In general, excellent correlation
exists between the time-domain and
analytical methods. 

The same tailored input (with the exception
that ∆t = 0.02) was applied to the X-31A
nonlinear simulation6 at Mach 0.7 and an
altitude of 10,000 ft (case 2) (table 2).
Figure 8 shows results from analytic linear
analysis as well as time-based results from
the nonlinear simulation using simulta-
neous inputs and long (2048-point)
Schroeder inputs applied separately to
each control input. The results using long,
separately applied inputs are included as
the “truth” model for the nonlinear simula-
tion. Differences exist between the linear
and nonlinear results. Some portion of this
difference is a result of the simplifying
assumptions that were used to formulate
the linear model.

The results using simultaneous inputs fall
between the results from linear analysis

and the nonlinear simulation that used
separate inputs. Both of the time-based
analysis methods produce somewhat
erratic results. The low frequencies
involved are on the lower edge of the
frequency range over which good results
can be obtained. The difficulty stems from
the requirement for a long-duration input
that does not cause the vehicle to change
flight condition. In addition, the technique
that used long Schroeder inputs applied
separately showed a sensitivity to the time
duration of the applied input in relation to
the sample time processed. This sensitivity
indicates a frequency leakage problem.
Another contributor to the erratic nature of
the data obtained with time-based methods
seems to be an accumulated effect of
relatively small numerical errors in each of
the nine transfer-function estimations used
in the computation of the singular value. 

All three methods predicted a peak
magnitude on the singular value plot within
13



Figure 8. Structured singular values of the X-31A airplane at Mach 0.70 and an altitude of
10,000 ft (case 2) using the nonlinear simulation and compared to analytic results (n1 = 3,

 = 42.7,  = 0.0796 (0.500 rad/sec),  = 0.504 (3.167 rad/sec), ∆t = 0.02).
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t P f 1 f 2
approximately 5 percent of the lowest peak
value. The frequency at which the peak
occurs correlates well for all three methods.
The results from the tailored excitation
input provide a reasonable measure of the
stability margin of the system.

Results for the High-Frequency Range

All of the cases where the minimum
stability margin fell within the high-
frequency range were high-speed cases.
For the X-31A airplane, the thrust-vectoring
system is not used at high dynamic-
pressure flight conditions, which simplifies
the problem for these cases to a 2-by-2
matrix of transfer functions. In addition, the
high-frequency range from 2.0 to 10.0 rad/
sec allows for a much shorter duration
excitation signal than the low-frequency
range allows. Following the procedure
proposed in this paper, a tailored excitation
input was generated (n1 = 3,  = 9.42,

 = 0.3185 (2.001 rad/sec),  = 1.5924
(10.005 rad/sec), ∆t = 0.01). A delay of
5 sec was used to avoid startup transient
errors. The sum of the total processed time
and delay time (14.42 sec) can be
compared to more than 82 sec required for
FFT analysis with 2048 data points applied
to two inputs separately.

Figure 9 shows a comparison of linear
analysis with the time-domain approach
at Mach 0.9 and an altitude of 10,000 ft
(case 3). Columns 5 and 6 in table 2 show
results using the linear model with both
analytic and time-domain solutions for each
of the flight conditions. For the linear model,
good correlation exists between the time-
based and analytical methods. 

The same inputs (with the exception that
∆t = 0.02) were applied to the nonlinear
simulation at Mach 0.9 and an altitude
of 10,000 ft (case 3). Figure 10 showst P

f 1 f 2
14



15

Figure 9. Structured singular values for the linear model of the X-31A airplane at Mach 0.90
and an altitude of 10,000 ft (case 3, n1 = 3,  = 9.42,  = 0.3185 (2.001 rad/sec),

 = 1.5924 (10.005 rad/sec), ∆t = 0.01).

Figure 10. Structured singular values of the X-31A airplane at Mach 0.90 and an altitude of
10,000 ft (case 3) using the nonlinear simulation and compared to analytic results (n1 = 3,

 = 9.42,  = 0.3185 (2.001 rad/sec),  = 1.5924 (10.005 rad/sec), ∆t = 0.02).
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results from linear analysis and the
nonlinear simulation using simultaneous
inputs and long (2048-point) Schroeder
inputs applied separately to each control
input. As in the comparison for case 2,
figure 10 shows differences between the
linear and nonlinear results.

For this case, the results obtained using
separate inputs correlate better with the
results from simultaneous inputs when
compared to the low-frequency data. Also
for case 3, both of the time-based analysis
methods provide less erratic results
compared to case 2. These improved
results could be caused in part by a
reduction in the number of elements in the
transfer-function matrix (four for a 2-by-2
matrix as opposed to nine for a 3-by-3
matrix). However, FFT analysis generally
provides better results for this frequency
range compared to the low range.

All three methods predicted a peak
magnitude on the singular value plot within
approximately 7 percent of the lowest peak
value. Because of the relatively flat nature
of the peak magnitude, the frequency at
which the peak occurs did not correlate as
well as for the low-frequency range. All
three methods showed a peak within the
range of frequencies analyzed.

Concluding Remarks

An experimental method was developed to
shorten the time required for in-flight
stability-margin measurement. This method
is proposed for applications where long-
duration inputs are not practical. The
method relies on a good prediction of the
frequency range where the minimum
stability margin occurs.

Savings in the time required to obtain
stability-margin measurements were

achieved by combining a tailored excitation
input with Chirp-Z transformation algo-
rithms and focusing the data processing on
a specific frequency range. Increased time
savings were achieved in the case where
the minimum stability margin occurred in
the high-frequency range (3–6 rad/sec). In
addition, results for a multivariable system
were obtained by simultaneously applying
uncorrelated inputs, resulting in further
savings in the required time for the input
excitation.

A Schroeder wave input was used to excite
a particular set of discrete frequencies to
cover the range where the minimum
stability margin of a system was expected
to occur. The lowest frequency in the range
defines the length of excitation signal
required. For the cases examined here,
three cycles of the lowest frequency were
found to provide sufficient excitation to use
for the frequency-response calculation
algorithm.

Each frequency component of the tailored
input excitation was chosen so that an
integer number of cycles occurred within
the time length to be processed. This
method ensured that the problems
associated with frequency leakage could
be avoided.

For systems with low damping, significant
errors could be introduced if the system
was not allowed to reach a steady-state
periodic condition. A delay was added
between the excitation application and the
sampling of the results. A proposed test for
errors induced by startup transients was
devised; however, further testing is needed
to ensure that the time required for this test
does not conflict with the short time
required for transitory flight conditions.
16



The experimental method produced a
reasonable measurement of the stability
margin of the system when compared to
linear analysis. The method was applied to
both a high-order linear model and
nonlinear simulation of the X-31A vehicle. 

For the X-31A airplane, the minimum
stability margin occurred within two
frequency ranges, depending on the flight
condition. The high-frequency range
allowed for a greater reduction in input exci-
tation time than the low-frequency range
allowed. Results from the low-frequency
range were somewhat erratic (not smooth).
The low frequencies involved and conse-
quent long-duration inputs tend to cause
changes in flight condition that corrupt the
results. The tailored excitation input dem-
onstrated less susceptibility to frequency
leakage problems when compared to
results from long-duration Schroeder
inputs.

The approach outlined in this paper
provides an experimental method with the
potential for measuring stability margins for
vehicles at flight conditions (high angles of
attack or hypersonic accelerating flight)
where long periods at steady-state are
difficult, if not impossible, to achieve.
Further proof of the concept in the flight
environment is warranted.
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